Zoom-Mikroskop ZM

Das universell einsetzbare Zoom-Mikroskop

Die Vorteile im Überblick

Zoom-Mikroskop ZM

Mikroskopkörper

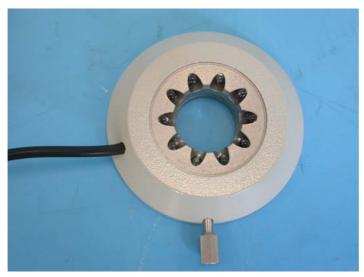
Kernstück des ZM ist ein Mikroskopkörper mit dem Zoom-Faktor 5 : 1 bei einem Abbildungsmaßstab von 0,8x...4x.

Mit 10x- und 12,5x- Okularen und Vorsatzlinsen kann ein Vergrößerungsbereich von 2x bis 250x abgedeckt werden.

- ➤ Das ZM ist ein Mono-Zoomsystem und hat den Vorteil, dass es im Unterschied zu Zoom-Stereomikroskopen für Meßaufgaben besser geeignet ist, da das Objekt nicht unter einem Winkel betrachtet wird.
- Es können relativ hohe Vergrößerungen erzielt werden, ohne dass die Bildqualität beeinträchtigt wird, wie dies bei Stereomikroskopen oft der Fall ist. Der Vergrößerungsbereich reicht von 2 x bis 250 x.
- Es liegen relativ große freie Arbeitsabstände vor, um auch unter dem Mikroskop arbeiten zu können.
 Bei einer Vergrößerung von 2 x bis 12,5 x beträgt der freie Arbeitsabstand 280 mm.
 Bei 8 x bis 50 x beträgt er immer noch 116 mm.
- Das ZM kann an alle Stative aus dem Stereo- und dem Werkstattmikroskopprogramm von Hund adaptiert werden. Damit stehen viele Möglichkeiten zur Aufnahme eines Objektes, zu seiner Verschiebung und zu seiner Vermessung zur Verfügung.
- Entscheidend für Betrachtung, Vermessung und Dokumentation ist die dem Objekt und der jeweiligen Fragestellung angepasste Beleuchtung. Hund verfügt über eine Reihe von Beleuchtungsverfahren wie Auflicht-Hellfeld, Durchlicht-Hellfeld, Durchlicht-Dunkelfeld, Auflicht-Dunkelfeld und schräge Beleuchtung. Es stehen Kaltlichtquellen und Lichtleiter aus eigener Fertigung zur Verfügung und damit auch die Möglichkeit einer individuellen Anpassung.

Technische Daten

Zoom-Faktor 5:1 Abbildungsmaßstab 0,8x...4x


Mikroskopvergrößerung: V_M

Objektfelddurchmesser: D

Vorsatz- Linse	Arbeits- abstand (mm)	Okular 10x/18		Okular 12,5x/18	
		V _M	D (mm)	V _M	D (mm)
0,25 x	280	2x10x	9018	2,5x12,5x	9018
0,5x	147	4x20x	459	5x25x	459
0,63x	116	5x25x	367,2	6,3x32x	367,2
-	116	8x40x	22,54,5	10x50x	22,54,5
2x	33	16x80x	11,252,25	20x100x	11,252,25
5x	5	40x200x	4,50,9	50x250x	4,50,9

Zur Betrachtung im Auflicht stehen für die Vorsatzlinsen 2x und 5x spezielle LED-Ringlichter zur Verfügung:

Vorsatzlinse 2x: 16 Punkt LED-Ringlicht Vorsatzlinse 5x: 10 Punkt LED-Ringlicht

10 Punkt LED-Ringlicht zur Vorsatzlinse 5 x

Stative / Tische


Einfaches Stativ SM für Untersuchungen im Auflicht. Die Beleuchtung kann z.B. über an Faserlichtquellen gekoppelte Lichtleiter erfolgen.

Stativ mit integrierter Beleuchtung für Auflicht und Durchlicht. Auf diesen Fuß ist eine Grundplatte montiert, die größere Lasten aufnehmen kann bzw. das Aufsetzen spezieller Tische ermöglicht. Zum Beispiel einen leicht beweglichen Gleittisch zum raschen Durchmustern größerer Flächen wie etwa Platinen.

Gleittisch zum raschen Durchmustern größerer Objekte Tischfläche 160 mm x 240 mm. Verschiebebereich 100 mm x 140 mm.

Zoom-Mikroskop ZM mit Gleittisch zur Kontrolle einer bestückten Leiterplatte

Stativ mit Durchlicht-Hellfeld- und Durchlicht-Dunkelfeldbeleuchtung

Stativ mit Durchlicht Hellfeldund Durchlicht-Dunkelfeld-Beleuchtung zur Kontrastierung transparenter und halbtransparenter Materialien.

Zoom Mikroskop ZM am Stativ mit Durchlicht-Hellfeld und Durchlicht-Dunkelfeld-Beleuchtung.

Dokumentieren

Video-Technik

Vorteile

- Man erhält große Livebilder auch von sich bewegenden Strukturen.
- Im Livebild kann nachfokussiert werden, so dass die Bilder hinsichtlich Schärfe optimal eingestellt werden können.
- Die Bilder können gleichzeitig von mehreren Personen betrachtet werden.

Zum Anschluß von Videokameras stehen zwei Binofototuben zur Verfügung

Binofototubus 30/70 70 % des Lichtes gehen zur Videokamera

Bei diesem Tubus kann gleichzeitig im Mikroskop beobachtet und das Bild Er wird dann empfohlen, wenn ausreichende Bildhelligkeit vorliegt.

Binofototubus 100/100 (umschaltbar) 100 % des Lichtes gehen wahlweise zum Beobachter bzw. zur Kamera

Vor allem bei lichtschwachen Bildern (schwach reflektierende oder stark absorbierende Objekte) wird dieser Tubus eingesetzt.

Falls das Zoom-Mikroskop ZM als reines Videomikroskop betrieben werden soll, so genügt ein einfacher Zwischentubus, der den Beobachtungstubus ersetzt.

Digitale Fotografie

Vorteile

- Digitale Fotokameras erlauben die Speicherung von Bildern im Rechner und deren weitere Bearbeitung.
- Die Bilder können über E-Mail weiter gegeben oder auch direkt ausgedruckt werden.
- Die Kameras können auch noch für andere Zwecke eingesetzt werden.

Einschränkung im Vergleich zur Videotechnik:

Es kann kein großes Livebild auf dem Display des Rechners dargestellt werden

Adaption der Coolpix-Digitlalkamera

Messen

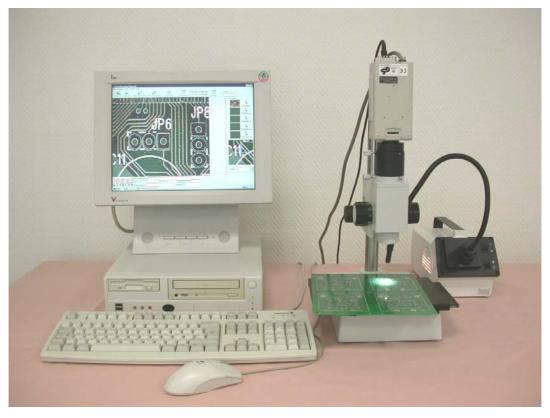
Messungen mit Hilfe von Meßtischen

Messtisch (50 mm x 50 mm) mit digitaler und mechanischer Messspindel.

An diesen Tisch können folgende Messspindeln angesetzt werden:

Messspindeln mit Trommelablesung

Messstrecke = 50 mm / Auflösung = 0,01 mm Messstrecke = 50 mm / Auflösung = 0,005 mm


Messspindel mit Digitalanzeige

Messstrecke = 50 mm / Auflösung = 0,001 mm

Messungen mit Hilfe der elektronischen Bildverarbeitung

Strukturen innerhalb eines Bildes können sehr komfortabel mit Hilfe der elektronischen Bildverarbeitung vermessen werden. Hierzu wird die Videokamera mit einem Frame-Grabber, der in ein leeres Slot im Rechner eingesteckt wird, verbunden.

Mit der **Hund-Imaging** Software kann jeder ohne zusätzliche Ausbildung sofort arbeiten.

Kopplung des Zoom-Mikroskops ZM mit dem Hund-Imaging-System zur Vermessung von Strukturen.

Helmut Hund GmbH

Postfach 21 01 63 D-35550 Wetzlar Tel.: 06441-2004-0

Fax: 06441-2004-44

E-Mail: hundwetzlar@hund.de
Internet: hundwetzlar@hund.de